The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme.

نویسندگان

  • Rhiju Das
  • Lisa W Kwok
  • Ian S Millett
  • Yu Bai
  • Thalia T Mills
  • Jaby Jacob
  • Gregory S Maskel
  • Soenke Seifert
  • Simon G J Mochrie
  • P Thiyagarajan
  • Sebastian Doniach
  • Lois Pollack
  • Daniel Herschlag
چکیده

Large RNAs can collapse into compact conformations well before the stable formation of the tertiary contacts that define their final folds. This study identifies likely physical mechanisms driving these early compaction events in RNA folding. We have employed time-resolved small-angle X-ray scattering to monitor the fastest global shape changes of the Tetrahymena ribozyme under different ionic conditions and with RNA mutations that remove long-range tertiary contacts. A partial collapse in each of the folding time-courses occurs within tens of milliseconds with either monovalent or divalent cations. Combined with comparison to predictions from structural models, this observation suggests a relaxation of the RNA to a more compact but denatured conformational ensemble in response to enhanced electrostatic screening at higher ionic concentrations. Further, the results provide evidence against counterion-correlation-mediated attraction between RNA double helices, a recently proposed model for early collapse. A previous study revealed a second 100 ms phase of collapse to a globular state. Surprisingly, we find that progression to this second early folding intermediate requires RNA sequence motifs that eventually mediate native long-range tertiary interactions, even though these regions of the RNA were observed to be solvent-accessible in previous footprinting studies under similar conditions. These results help delineate an analogy between the early conformational changes in RNA folding and the "burst phase" changes and molten globule formation in protein folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal ion dependence of cooperative collapse transitions in RNA.

Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R(g)) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multi...

متن کامل

Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations.

Counterions are required for RNA folding, and divalent metal ions such as Mg(2+) are often critical. To dissect the role of counterions, we have compared global and local folding of wild-type and mutant variants of P4-P6 RNA derived from the Tetrahymena group I ribozyme in monovalent and in divalent metal ions. A remarkably simple picture of the folding thermodynamics emerges. The equilibrium f...

متن کامل

Early events in RNA folding.

We describe a conceptual framework for understanding the way large RNA molecules fold based on the notion that their free-energy landscape is rugged. A key prediction of our theory is that RNA folding can be described by the kinetic partitioning mechanism (KPM). According to KPM a small fraction of molecules folds rapidly to the native state whereas the remaining fraction is kinetically trapped...

متن کامل

Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.

Large, structured RNAs traverse folding landscapes in which intermediates and long-lived misfolded states are common. To obtain a comprehensive description of the folding landscape for a structured RNA, it is necessary to understand the connections between productive folding pathways and pathways to these misfolded states. The Tetrahymena group I ribozyme partitions between folding to the nativ...

متن کامل

Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch

Intermediates play important roles in RNA folding but can be difficult to characterize when short-lived or not significantly populated. By combining (15)N relaxation dispersion NMR with chemical probing, we visualized a fast (kex=k1+k-1≈423 s(-1)) secondary structural switch directed towards a low-populated (∼3%) partially folded intermediate in tertiary folding of the P5abc subdomain of the 'T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 332 2  شماره 

صفحات  -

تاریخ انتشار 2003